Supporting Online Material for Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays
نویسندگان
چکیده
Radoje Drmanac,* Andrew B. Sparks, Matthew J. Callow, Aaron L. Halpern, Norman L. Burns, Bahram G. Kermani, Paolo Carnevali, Igor Nazarenko, Geoffrey B. Nilsen, George Yeung, Fredrik Dahl, Andres Fernandez, Bryan Staker, Krishna P. Pant, Jonathan Baccash, Adam P. Borcherding, Anushka Brownley, Ryan Cedeno, Linsu Chen, Dan Chernikoff, Alex Cheung, Razvan Chirita, Benjamin Curson, Jessica C. Ebert, Coleen R. Hacker, Robert Hartlage, Brian Hauser, Steve Huang, Yuan Jiang, Vitali Karpinchyk, Mark Koenig, Calvin Kong, Tom Landers, Catherine Le, Jia Liu, Celeste E. McBride, Matt Morenzoni, Robert E. Morey, Karl Mutch, Helena Perazich, Kimberly Perry, Brock A. Peters, Joe Peterson, Charit L. Pethiyagoda, Kaliprasad Pothuraju, Claudia Richter, Abraham M. Rosenbaum, Shaunak Roy, Jay Shafto, Uladzislau Sharanhovich, Karen W. Shannon, Conrad G. Sheppy, Michel Sun, Joseph V. Thakuria, Anne Tran, Dylan Vu, Alexander Wait Zaranek, Xiaodi Wu, Snezana Drmanac, Arnold R. Oliphant, William C. Banyai, Bruce Martin, Dennis G. Ballinger,* George M. Church, Clifford A. Reid
منابع مشابه
Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays.
Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nan...
متن کاملAccurate whole genome sequencing as the ultimate genetic test.
Featured Article: Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on selfassembling DNA nanoarrays. Science 2010;327:78–81. Even 30 years ago, it was obvious that Sanger sequencing had limited throughput, and a more efficient process could replace many tedious gene and genome mapping projects. It would take until the m...
متن کاملAccurate whole human genome sequencing using reversible terminator chemistry
DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400–800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to iden...
متن کاملAn accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments
Motivation The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragmen...
متن کاملBase qualities help sequencing software.
With the complete sequencing of the human genome under way and the sequencing of complete microorganism genomes becoming commonplace, we have truly entered the era of large-scale DNA sequencing. Why now? As in some other data-rich areas of modern biology, for example, protein structure determination, it can be argued that the ratelimiting factors in increasing efficiency and throughput have bee...
متن کامل